Brain-derived neurotrophic factor and neurotrophin-3 enhance somatostatin gene expression through a likely direct effect on hypothalamic somatostatin neurons.

نویسندگان

  • F Rage
  • B Riteau
  • G Alonso
  • L Tapia-Arancibia
چکیده

Although neurotrophins (NTs) have been extensively studied as neuronal survival factors in some areas of the central nervous system, little is known about their function or cellular targets in the hypothalamus. To understand their functional significance and sites of action on hypothalamic neurons, we examined the effects of their cognate ligands on neuropeptide content and messenger RNA (mRNA) expression in somatostatin neurons present in fetal rat hypothalamic cultures. Treatments were performed in defined insulin-free medium between days 6 and 8 of culture, since the maximal effects of NTs on somatostatin content and mRNA expression were observed after 48-h incubations. Brain-derived neurotrophic factor and NT-3, but not nerve growth factor, induced a dose-dependent increase in somatostatin content, which was influenced by plating density. The same treatment increased somatostatin mRNA and immunostaining intensity of somatostatin neurons, but had no effect on the number of these labeled neurons. The increased levels of somatostatin (peptide and mRNA) induced by NTs were not blocked by tetrodotoxin or by glutamate receptor antagonists, suggesting that endogenous neurotransmitters (e.g. glutamate) were not involved in these effects. In contrast, the stimulatory effects were completely blocked by K-252a, an inhibitor of tyrosine kinase (Trk) receptors, whereas the less active analog K-252b was ineffective. Double-labeling studies demonstrated that both TrkB or TrkC receptors were located on somatostatin neurons. Our results show that, in rat hypothalamic cultures, brain-derived neurotrophic factor, and NT-3 have a potent stimulatory effect on peptide synthesis in somatostatinergic neurons, likely through direct activation of TrkB and TrkC receptors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of brain-derived neurotrophic factor in the regulation of hypothalamic somatostatin in vivo.

Brain-derived neurotrophic factor (BDNF) has been extensively studied in the central nervous system as a survival and differentiation factor and in plasticity processes. In vitro, BDNF has been shown to stimulate cellular differentiation and neurohormones synthesis and release. We demonstrated that BDNF is a potent and specific stimulatory agent of somatostatin (SRIH) synthesis in primary cultu...

متن کامل

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons

Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...

متن کامل

Effect of selegiline on neural stem cells differentiation: a possible role for neurotrophic factors

Objective(s): The stimulation of neural stem cells (NSCs) differentiation into neurons has attracted great attention in management of neurodegenerative disease and traumatic brain injury. It has been reported that selegiline could enhance the morphologic differentiation of embryonic stem cells. Therefore this study aimed to investigate the effects of selegiline on NSCs differentiation with focu...

متن کامل

Expression and binding characteristics of the BDNF receptor chick trkB.

Previous studies using transfected cells have indicated that the mammalian receptor tyrosine kinase trkB binds the neurotrophins brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin-4. However, most studies demonstrating that these neurotrophins prevent the death of embryonic neurons and have specific neuronal receptors have been performed with chick neurons. In order to explore t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Endocrinology

دوره 140 2  شماره 

صفحات  -

تاریخ انتشار 1999